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Abstract: The open mapping theorem is one of the basic theorems of functional analysis and has wide applications. 

in this paper we review some of these applications. In particular we consider the Bounded linear operators and the 

convergence of Fourier series. 
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1.   OPEN MAPPING THEOREM 

The open mapping theorem asserts that a surjective bounded linear operator from a Banach space to another Banach space 

must be an open map. This result is uninteresting in the finite dimensional situation, but turns out to be very important for 

infinite dimensional spaces. From history there were several concrete, relevant results in various areas, Banach had the 

insight to single out the property as a theorem. 

A map               between two metric spaces is called an open map if      is open in   for any open set   in . 

This should not be confused with continuity of a map, namely,   is continuous if        is open in   for any open set   

in  . As an example, let us show that every non-zero linear functional on a normed space X is an open map. Indeed, pick 

     with     . Such point always exists when the functional   is non-zero. For any open set  in  , we claim that 

  is open. Letting      , as      and is open, there exists some     such that        is contained in  . Then 

              for all          and                 imply that                 ,so  is open. 

Before stating the theorem, let's state a necessary and sufficient condition for a linear operator to be open. 

Lemma (1.1): Let          when   and   are normed spaces.   is an open map if and only if the image of a ball 

under   contains a ball. 

Roughly speaking, a linear operator either has "fat" image or it collapses everywhere. 

Proof: The necessary is obvious. For sufficiency, suppose there exists              
     for some      

    . By 

linearity,    
         

            
     implies 

   
        

         

     
         

     
          ‖     ‖  

Let G be an open set in . We want to show that    is open. So, for 

           , as  is open, we can find a small     such that        . From the above inclusion, 

                       
  
  

  

Or 

                

which shows that the ball         is contained in    so   is open. 
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Theorem (1.1): (Open Mapping Theorem): Any surjective bounded linear operator from a Banach space to another 

Banach space is an open map. 

Unlike the uniform boundedness principle here we require both the domain and target of the linear operator to be 

complete. 

Proof: Step 1: We claim that there exists     such that 

            ̅̅ ̅̅ ̅̅ ̅̅ ̅  

For, as   is onto, we have 

  ⋃       

 

 

  

By assumption   is complete, so we may apply Baire theorem to conclude that     
   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  contains a ball for some   , i.e., 

           
   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

Since     
    is dense in    

   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , by replacing        by a smaller ball if necessary,  

we may assume       , for some       
   . Then 

           
   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅               ‖  ‖  

So            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

or 

            ̅̅ ̅̅ ̅̅ ̅̅ ̅   
 

 
  

Step 2:             . 

First, note by scaling, 

  
  

       
  

   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                     

Letting        , we want to find               . We will do this by constructing an approximating sequence. 

For   
 

 
 from (4.1) with   , there exists          such that 

‖     ‖  
 

 
  

As         

 
          

 

  , from (4.1) with    , there exists      

 

    

such that 

‖         ‖  
 

  
  

Keep doing this we get {  }      

    
    such that 

‖              ‖  
 

  
  

Setting {  }  ∑   
 
 , we have 

‖     ‖  
 

  
  

Let's verify that {  } is a Cauchy sequence in           , 

‖     ‖  ‖         ‖ 
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 ‖    ‖    ‖  ‖ 

 
 

  
   

 

  
 

 

    
   

as    . From the completeness of   we may set            . Let's check that         and      . For, 

‖  ‖  ∑‖  ‖

 

 

 ∑
 

    

 

 

      

So   belongs to the closure of      , or, in      : Next, 

‖     ‖  ‖     ‖  ‖       ‖ 

 
 

  
 ‖ ‖‖     ‖    

as              

We have shown that the image of the ball       under   contains the ball      . 

Recall that a linear operator is invertible if it is bounded, bijective and with a bounded inverse. The following theorem 

shows that the boundedness of the inverse comes as a consequence of boundedness and surjectivity of the operator when 

working on Banach spaces. 

Theorem (1.2): Let    be Banach spaces, and     a continuous linear map from   onto . The T is an open map. 

Proof: We shall denote          , the open ball in  centered at   with radius , and    the same in  . It suffices to 

prove that for any        , contains a  . Assuming that this has been proved, let   be a non-void open set in , and 

let      . Let    be such that         . Then 

                             

which shows that T(G) contains a neighborhood of every one of its points, and hence is open. 

Since  ⋃     ⁄
 
               ⋃     ⁄

 
   , by Baire category theorem, one of the sets       ⁄  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  contains a 

non-void open set. Since the        is a homeomorphism in        ⁄  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  contains a non-void openset. Thus, 

     ̅̅ ̅̅ ̅̅ ̅̅   (   ⁄ )   (   ⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (   ⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (   ⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅       

Since a map of the form       is a homeomorphism, the set     is open. Since the set     ⋃          is 

the union of open sets, it is open, contains 0, and hence contains a   . 

Let      ⁄ , and let      be such that∑   
 
      . Then, according to the result stated in the preceding paragraph, 

there is a sequence  with {          }             , and such that 

     
 ̅̅ ̅̅ ̅̅ ̅̅     

                                                               

Let      . It will be shown that there is an     such that    . From 

(1), with    , it is seen that there is an       
 such that ‖     ‖    Since           , from (1), with    , 

there is an       
with ‖         ‖    . Continuing in this manner, a sequence {  } may be 

defined for which       
, and 

‖    ∑   

 

   

 ‖                                                

Let           , so that for     ‖     ‖  ‖         ‖           . This shows that {  } is a 

Cauchy sequence, and that theseries        converges to a point   with 

‖ ‖     
   

‖  ‖     
   

                    

Since    is continuous, it is seen from (2) that    . Thus it has been shown that an arbitrary ball    about the origin in 

  maps onto a set    which contains a ball        about the origin in. 
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Theorem (1.3): A continuous linear one-to-one map of one Banach space onto all of another has a continuous linear 

inverse. 

Proof: Let     be Banach spaces and   a continuous linear one-to-one map with    . Since           maps open 

sets onto open sets by OpenMapping Theorem, the map     is continuous. Let                             , 

and a scalar. Then, 

                                      

so that 

                              

And                     . These equations show that     is linear. 

Remark: The open mapping theorem (Theorem (1.2)) can also be derived from Theorem (1.3) as follows: 

Let  {      }. Then   is closed linear subspace of . Let  ̃   ⁄   be the map induced by    ̃ is one-to-one and 

continuous, so by 

Theorem (1.4): it is an open map. Let       ⁄  be the natural projection. is an open map. 

So    ̃    is open. 

Lemma (1.5): Let     be normed linear spaces. If there is a linear homeo- morphism between  and  , then either both 

spaces are complete or both are incomplete. 

Proof: If   is such a homeomorphism from  to, then there exist positive constants    such that 

 ‖ ‖  ‖  ‖   ‖ ‖  

It follows that a sequence is Cauchy (convergent to x) in X if and only if it images under   is Cauchy (convergent to   ) 

in   . 

Example 1: Let   be           with the norm‖ ‖  ‖ ‖  ‖  ‖ , and   be          with the norm ‖ ‖  ‖ ‖ . Let 

T be the identity map from   to.  

Then T is continuous, but     is not continuous since   is not complete. 

Example 2: Let Y be an infinite dimensional real Banach space and let   {      }be a Hamel basis for   such that 

‖  ‖    for all  . Let   be the set of functions   from   to  such that        for all but finitely many  's. Equip   with 

the norm defined by‖ ‖  ∑ |    | . Then X is an incomplete normed linear space. Define       by       

∑          

Then   is one-to-one continuous linear.      is not continuous since   is incomplete (and   is complete). 

Definition (1.5): Let   be a linear map whose domain      is a linear subspace of a Banach space  , and whose range 

lies in a Banach space   . The graph of   is the set of all points in the product space     of the form        with   

    . The operator   is said to be closed if its graph is closed in the product space    . An equivalent statement is as 

follows: The operator   is closed if                    imply that        and     . 

2.   BOUNDED LINEAR OPERATORS 

Let   and   be two vector spaces over   . Recall that a map      is a linear operator (usually called a linear 

transformation in linear algebra) if for all                  , 

                          

The null space (or kernel) of       , is the set {        } and the range of   is denoted by     . Both      and 

     are subspaces of   and   respectively. 

The collection of all linear operators from   to   forms a vector space       under pointwise addition and scalar 

multiplication of functions. 

When      and    , any linear operator (or called linear transformation) can be represented by an     matrix 

with entries in  . The vector space          is of dimension   . 
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When   and   are normed, one prefers to study continuous linear operators.         is continuous means it is 

continuous as a mapping from the metric space   to the metric space   . It is called a bounded linear operator if it maps 

any bounded set in   to a bounded set in. By linearity, it suffices to map a ball to a bounded set.  

Proposition (2.1): Let          where   and   are normed spaces. We Have 

(a)   is continuous if and only if it is continuous at a point. 

(b)  is bounded if and only if there exists a constant     such that 

‖  ‖   ‖ ‖               

(c) T is continuous if and only if   is bounded. 

We denote the collection of all bounded linear operators from   to   by 

      . It is a subspace of      . They coincide when   and   are of finite dimension, of course. 

We observe that           

The space        not only inherits a vector space structure from   and  but also a norm structure. For         , 

define its operator norm by 

‖ ‖     
   

‖  ‖

‖ ‖
    

‖ ‖  
‖  ‖  

It is immediate to check that ‖ ‖ makes        into a normed space. Furthermore, for         and         , the 

composite operator          and 

‖  ‖  ‖ ‖‖ ‖  

The following proposition is useful in determining the operator norm. 

Proposition (2.2): Let         . Suppose  is a positive number satisfying 

(a) ‖  ‖   ‖ ‖, for all     where   is a dense set in  , and 

(b) there exists a nonzero sequence {  }    such that 
‖   ‖

‖  ‖
   Then   ‖ ‖  

Proof: For any    , pick a sequenc          . Then ‖  ‖        ‖   ‖         ‖  ‖   ‖ ‖ shows 

that ‖  ‖   ‖ ‖, for all    . By the definition of the operator norm, 

‖ ‖     
‖ ‖  

‖  ‖     

On the other hand, for the sequence {  } given in (b), 

     
   

‖   ‖

‖  ‖
 ‖ ‖  

so    ‖ ‖  

The following result, can be established in a similar way. 

Proposition (2.3):       is a Banach space if   is a Banach space.Let         where   and   are normed spaces. 

Then   is called invertible if it is bijective with the inverse in       In many applications, the problem can be rephrased 

to solving the equation      in some spaces. 

The invertibility of   means the problem has a unique solution for every y. 

Furthermore, for two solutions             , the continuity of   implies the estimate‖        ‖   ‖     ‖, 

from which we see that the solutions depend continuously on the given data. This is related to the so-called well- posed 

problem in partial differential equations. 

The following general result is interesting. 
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Theorem (2.4): Let          be invertible where   is a Banach space. 

Then          is invertible whenever  satisfies ‖      ‖ ‖      ‖     

The idea is as follows. We would like to solve      for a given y. 

Rewriting the equation in the form             and applying the inverse operator to get             where   

is the identity operator is on       and           is small in operator norm. So the solution x should be given by 

 ∑    
         as suggested by the formula 

        ∑   

 
   | |     

Our proof involves infinite series in      . As parallel to what is done in elementary analysis, an infinite 

series∑           ‖ ‖ , is convergent if its partial sums    ∑   
 
 form a convergent sequence in    ‖ ‖ . Wenote 

the following criterion for convergence. 

Proposition (2.5): An infinite series ∑     in the Banach space   is convergent if there exist      such that ‖  ‖  

  for all   and ∑     is convergent. 

Proof : We have 

‖     ‖  ‖∑   

 

   

‖  ∑‖  ‖

 

   

 ∑   

 

   

  

and the result follows from the convergence of ∑     and the completeness of    

In particular, the series is convergent if there exists some         such that‖  ‖     for all  . 

Corollary:  Let         where    is a Banach space with‖ ‖   (2.6) 

Then     is invertible with inverse given by 

        ∑   

 

   

 

Proof: By assumption, there exists some         such that ‖ ‖    From 

‖  ‖  ‖ ‖    and Proposition (2.5) that ∑    
    converges in       . 

Moreover, 

     ∑   

 

   

 ∑       

 

   

    
   

∑       

 

   

    
   

            

Similarly,∑         
       

Proof of Theorem (2.6): We adopt the notations in the above paragraph. As ‖ ‖    by assumption, Corollary (2.6) 

implies that ∑    
    is the inverse of    . Letting     ∑    

        , then            ; that is,     . 

We have shown that   is onto. Also it is bounded. On the other hand, from 

‖      ‖  ‖          ‖  ‖      ‖‖  ‖we have 

‖  ‖  |‖  ‖  ‖      ‖| 

    ‖        ‖ ‖  ‖ 

 
   ‖        ‖ 

‖   ‖
‖ ‖  

So S has a bounded inverse. We have completed the proof of this theorem. 
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As an application let us show that all invertible linear operators form an open set in        when   is complete. Let    

be invertible. Then for each   satisfying‖    ‖     ‖  
  ‖⁄ ; we have ‖    

   ‖  ‖  
  ‖‖    ‖   , so by 

this theorem   is invertible. That means the ball        is contained in the set of all invertible linear operators, and 

consequently it is open. For an    -matrix, its corresponding linear transformation is invertible if and only if it is 

nonsingular. Again a matrix is nonsingular if and only if its determinant is non-zero. As the determinant is a continuous 

function on matrices (as the space    
 ), for all matrices close to a nonsingular matrix their determinants are non-zero, so 

all nonsingular matrices form an open set in the vector space of all    -matrices. Theorem (2.4) shows that this result 

holds in general. 

For a bounded linear operator   from the normed space   to another normed space   there associates with a linear 

operator    from    to    called the transpose of  . Indeed, we define    by 

                                      

It is straightforward to prove the following result. 

Proposition (2.7): Let    be de_ned as above. Then 

(a)   isa bounded linear operator from    0 to   . Furthermore. ‖  ‖  ‖ ‖  

(b) The correspondence      is linear from       to         . 

(c) If          where   is a normed space, then           . 

We examine the finite dimensional situation. Let   be a linear operator from    to  . Let {  } and {  } be the canonical 

bases of          respec- tively. We have    ∑    
     where  ∑       , so   is represented by the matrix 

   -matri    
 . On the other hand, we represent    as a matrix with respect to the dual canonical bases {  

 } and {  
 } as 

     ∑    
    

  where   ∑     
 

  . From the relation     (  )          for all j we have    
    

. Thus the 

matrix of    is the transpose of the matrix of   . This justifies the terminology. In some books it is called the adjoint of   . 

Here we shall reserve this terminology for a later occasion. 

There are close relations between the ranges and kernels of   and those of its transpose which now we explore. Recall that 

the kernel of          is given by      {        } and its range is          . The null space is always a 

closed subspace of   and      is a subspace of  , but it may not be closed. 

For a subspace   of the normed space  , we define its annihilator to be 

   {                             }  

Similarly, for a subspace  of   , its annihilator is given by 

   {                       }  

It is clear that the annihilators in both cases are closed subspaces, and the following inclusions hold: 

         

and 

         

Lemma (2.8): Let   be a normed space,   a closed subspace of   and   a closed subspace of   . Then 

(a) 

         

(b) in addition, if   is reflexive, 

         

Proof. (a) It suffices to show        . Any          satisfies       

Whenever   vanishes on  . By the spanning criterion (or Theorem 3.9),    belongs to  . 
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(b) It suffices to show       . Any          satisfies       for all 

    . If  does not belong to  , as   is closed and the space is reexive, there is some      such that       and 

      . 

Proposition (2.9): Let   and   be two normed spaces and        . Then we have 

          ̅̅ ̅̅ ̅̅ ̅   

          ̅̅ ̅̅ ̅̅ ̅̅   

           ̅̅ ̅̅ ̅̅ ̅  

             ̅̅ ̅̅ ̅̅ ̅    

Proof:     
   means    

     for all    . By the definition of the transpose of   we have   
        for all  . Since 

  is continuous,   
      ̅̅ ̅̅ ̅̅ ̅ . 

We conclude that           ̅̅ ̅̅ ̅̅ ̅  By reversing this reasoning we obtain the other inclusion, so the first identity holds. 

The second identity can be proved in a similar manner. 

The third and the fourth identities are derived from the first and the second after using the previous lemma. 

It is clear that we have 

Corollary (2.10): Let   and   be normed and         . Then      is dense in   if and only if    is injective. 

The significance of this result is evident. It shows that in order to prove the solvability of the equation      for any 

given    , it suffices to show that the only solution to        is     . This sets up a relation between the 

solvability of the equation      and the uniqueness of the transposed equation        

3.   AN APPLICATION TO FOURIER SERIES 

Many details not given here. 

If           , then the Fourier series of   is 

∑  ̂         

 

    

                                                            

where the Fourier coefficients are given by 

 ̂    ∫              
     

                                                  

There are details missing from this. One is the restrictions on . Using the 

Lebesgue integral we would naturally impose the restriction that  is integrable, that is that   is measurable and 

∫ |    |  
     

   

Apart then from a discussion of almost everywhere equivalence classes of functions, that means that           is the 

natural place to consider Fourier series. 

(If we restrict more to           we get to the situation where we are considering an orthonormal basis {  }   of the 

Hilbert space          with 

             

Then the Fourier series is an example of the expansion of a vector in a Hilbert space with respect to an orthonormal basis 

because 

 ̂    〈    〉  
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In this setting the general theory of orthonormal bases applies and quite a few strong consequences follow. However, one 

can argue that the          setting is the natural generality to use.) 

Results that can be proved include: 

(i) If             have the same Fourier series (meaning that if the coefficients agree,  ̂     ̂   for all    ) then 

    in        (and recall that means that   and   agree almost everywhere). 

(ii) (Riemann-Lebesgue Lemma) For          , 

   
| |  

 ̂      

(iii) Combining these two facts with some elementary ones, we can state it as that the map 

             

given by 

   ( ̂     ̂     ̂      ̂     ̂      )                            

is a well-defined injective bounded linear operator. 

Notice that the first statement says that the Fourier series of a function           determines the function, though it does 

not say how to reconstruct the function. 

The Riemann-Lebesgue Lemma needs some background information to prove it, principally that finite trigonometric 

polynomials, which take the form 

∑         

 

    

 

for        are dense in        . It is easy to compute that the Fourier coefficients  ̂    for such a trigonometric 

polynomial      ∑          
     

are  ̂       for        and  ̂      for other  . In particular note that 

      always. 

It is also easy to see (using the triangle inequality) that 

| ̂   |  ‖ ‖  ∫ |    |  
     

                                

and so   maps         into   . It is easy to check that             is linear               and       

    for            and   ). 

Thus (3.4) gives that              is a bounded linear operator mapping the dense subset of trigonometric polynomials 

into  , hence having range in    . 

A natural question is to ask for a characterization of those series that have the right form to be Fourier series which are in 

fact the Fourier series of        functions. The first guess might be that the Riemann-Lebesgue Lemma tells the whole 

story, that             . 

Theorem (3.1): The range of the operator          defined by (3.3) is a proper subspace of  . 

While it is possible to establish this result in several ways, a relatively painless way is to use the open mapping theorem. 

Since   is injective, if it was surjectivethen its inverse would be bounded. However, there is a ‘relatively’ simple way to 

contradict that possibility: 

Lemma (3.2):  Let      ∑        
    . Then ‖     ‖    but 

   
   

‖  ‖     
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